FE based measures for structure borne sound radiation

نویسندگان

  • Matthias KLAERNER
  • Steffen MARBURG
  • Lothar KROLL
چکیده

The sound emission of thin-walled radiating components is a common objective of structural optimisation. Acoustic measures are not implemented in common FE-codes. Thus, different velocitiy based measures will be compared: the kinetic energy, the equivalent radiated power (ERP) and the lumped parameter model (LPM). The most common approach the ERP is based on the sound intensity in normal direction and the sound pressure on the radiating surface. Assuming a unit radiation efficiency all-over the surface and neglecting local effects, this is a common approach for an upper bound of structure borne noise. Therein, the sound power finally results from the squared velocity integrated over the radiating surface and the constant fluid impedance. As ERP usually requires extra post processing to consider the velocity in normal surface direction, the kinetic energy is essential in common FEA results including all velocity components apart from the normal direction, too. Thus, it is less accurate but maybe usable for optimisation abilities. In contrast, LPM is a simplification of the Rayleigh-integral and thus gives quite accurate results but requires significant higher computational costs than ERP. Possibilities and limits of estimating the emitted sound power by these three methods will be shown.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure-borne Sound – Phenomena and Prediction

The prediction of the sound radiated by vibrating structures and the layout of measures to reduce it, is a key issue for maintaining appropriate comfort in residential buildings, for guaranteeing the operability of sensitive machinery in production and testing and for the provision of appropriate conditions at working places. For the prediction the excitation, the transmission and the radiation...

متن کامل

Analytical Solution for Sound Radiation of Vibrating Circular Plates coupled with Piezo-electric Layers

In the present study, the classical plate theory (CPT) was used to study sound radiation of forced vibrating thin circular plates coupled with piezoelectric layers using simply supported and clamped boundary conditions. The novelty of the study consists of an exact closed-form solution that was developed without any use of approximation. Piezoelectric, electrical potential loaded in the transve...

متن کامل

Combined Effects of 528 Hz Sound and X-ray in Peripheral Blood Lymphocytes

Introduction: Radiotherapy is still one of the main options for cancer treatment but it is in association with damage to normal cells as well as the tumor cells. To reduce the injury in normal cells we have evaluated the effect of 528 hertz sound after X irradiation in peripheral blood lymphocytes. Materials and Methods: in this study, peripheral blood was o...

متن کامل

Vibro-acoustic Wave Filtering Properties of a Fluid-loaded Plate Reinforced by Periodic Ribs of Finite Width

An analytical model is developed for examining the vibro-acoustic properties of a fluid-loaded plate reinforced by periodic ribs of finite width. This model is used to understand the frequency filtering properties of the flexural wave and the structural-borne sound wave of the ribbed plate under different fluid loading conditions. The relationships between the flexural waves and the related sou...

متن کامل

Improved knock detection by time variant filtered structure-borne sound

In order to detect knock in spark plug engines generally structure–borne sound signals measured by acceleration sensors mounted on the engine housing are used. At test bed engines additional pressure sensors measuring the pressure inside the combustion chamber deliver a reference signal to adjust the parameters of knock detection based on the sound signal. We show by experimental results that t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014